

INSTRUCTION & SERVICE MANUAL D2xC1 ALARM HORN AND STROBE For Use In Hazardous Locations

The D2xC1 Alarm Horn and Strobe is CE marked for compliance with the European Explosive Atmospheres Directive 94/9/EC and the European EMC Directive 89/336/EEC

1) Introduction

The D2xC1 is an ATEX, IECEx and UL certified Alarm Horn and Strobe which produces a loud warning signal and bright visual signal in a hazardous area. Sixty-Four first stage alarm sounds can be selected by internal switches and each one can be externally changed to a second, third or fourth stage alarm sound. The unit may be used for Gas applications in Zone 2 / Class I Zone 2 / Class I, Division 2 as well as for Dust applications in Zone 22 / Class II Zone 22 / Class II Divison 2 / Class III Division 1 & 2. The beacon flashes at a set rate of 1Hz.

2) Warnings

SUITABLE FOR USE IN CLASS II, DIVISION 2, GROUPS A, B, C AND D HAZARDOUS LOCATIONS

SUITABLE FOR USE IN CLASS II, DIVISION 2, GROUPS E, F AND G HAZARDOUS LOCATIONS

WARNING: DO NOT OPEN WHEN EXPLOSIVE

ATMOSPHERE IS PRESENT

WARNING – EXPLOSION HAZARD – SUBSTITUTION OF ANY COMPONENT MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2.

WARNING – EXPLOSION HAZARD – SUBSTITUTION OF ANY COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS II, DIVISION 2.

POTENTIAL ELECTROSTATIC CHARGING HAZARD – CLEAN ONLY WITH A DAMP CLOTH

USE HEAT RESISTANT CABLES AND CABLE GLANDS (RATED 90°C OR HIGHER)

ÈXPLOSION HAZARD. DO NOT REMOVE OR REPLACE LAMPS, FUSES OR PLUG-IN MODULES UNLESS POWER HAS BEEN DISCONNECTED OR THE AREA IS KNOWN TO BE FREE OF IGNITIBLE CONCENTRATIONS OF FLAMMABLE GASES OR VAPORS.

EXPLOSION HAZARD. DO NOT DISCONNECT WHILE THE CIRCUIT IS LIVE OR UNLESS THE AREA IS KNOWN TO BE FREE OF IGNITIBLE CONCENTRATIONS.

3) Ratings and Markings

3.1 ATEX / IECEx certification

The D2xC1 Alarm Horn and Strobe complies with the following standards:

EN60079-0:2012+A11:2013 / IEC60079-0: ed. 6.0 (2011-06) EN60079-15:2010 / IEC60079-15: ed. 4.0 (2010-01) EN60079-31:2009 / IEC60079-31: ed. 1.0 (corr. 1 2009)

The EC-Type Examination Certificate DEMKO 14ATEX4786493904X / IECEx ULD14.0004X has been issued by UL. This confirms compliance with the European ATEX Directive 94/9/EC for Group II, Category 3G/D equipment. The unit carries the Community Mark and subject to local codes of practice, may be installed in any of the EEA member countries. This instruction sheet pdescribes installations which conform to the current issue of EN60079-14/IEC60079-14 Electrical Installation in Hazardous Areas; EN60079-10-1 / IEC 60079-10-1 Explosive Atmospheres - Classification of Areas. Explosive Gas Atmospheres; EN60079-10-2 / IEC 60079-10-2 Explosive Atmospheres - Classification of Areas. Explosive Dust Atmospheres. When designing systems for installation outside the UK, the local Code of Practice should be consulted.

The D2XC1X05 is rated as follows:

II 3G Ex nA IIC T2 Gc (Ta -40°C to +50°C) II 3D Ex tc IIIC T90°C Dc (Ta -40°C to +50°C)

The D2XC1X10 is rated as follows:

II 3G Ex nA IIC T1 Gc (Ta -40°C to +50°C) II 3G Ex nA IIC T2 Gc (Ta -40°C to +40°C)

II 3D Ex to IIIC T110°C Dc (Ta -40°C to +50°C)

CE marking:

CE

Zones, Gas / Dust Groups and Temperature Classification

When connected to an approved system the D2X unit may be installed in:

- Zone 2 explosive gas air mixture not likely to occur in normal operation, and if it does, it will only exist for a short time.
- Zone 22 explosive dust air mixture not likely to occur in normal operation, and if it does, it will only exist for a short time.

May be used with gases in groups:

Group IIA	propane
Group IIB	ethylene
Group IIC	hydrogen / acetylene

Having a temperature classification (for Gas applications) of:

T1	450°C
T2	300°C

May be used with Dust types:

Group IIIA	combustible flyings
Group IIIB	non-conductive dust
Group IIIC	conductive dust

Maximum Surface Temperature for Dust Applications:

For D2xC1X05: 90°C

For D2xC1X10: 110°C

3.2 Class / Zone ratings for US

The D2xC1 Alarm Horn and Strobe complies with the following standards:

ANSI/UL 60079-0-2013 ANSI/UL60079-15-2013 ISA60079-31-2013

The D2XC1X05 Alarm Horn and Strobe is rated as follows:

Class I, Zone 2 AEx nA IIC T2 Gc (Ta -40°C to +50°C) Zone 22 AEx tc IIIC T120°C Dc (Ta -40°C to +50°C)

The D2XC1X10 Alarm Horn and Strobe is rated as follows:

Class I, Zone 2	2 AEx nA IIC T1 Gc	(Ta -40°C to +50°C)
Class I, Zone 2	2 AEx nA IIC T2 Gc	(Ta -40°C to +40°C)
Zone 22	AEx tc IIIC T120°C Dc	(Ta -40°C to +50°C)

Installation must be carried out in compliance with the National Electric Code

3.3 Class / Zone ratings for Canada

The D2xC1 Alarm Horn and Strobe complies with the following standards:

CAN/CSA C22.2 No. 60079-0:11 CAN/CSA C22.2 No. 60079-15:12 CAN/CSA C22.2 No. 60079-31:12

The D2XC1X05 Alarm Horn and Strobe is rated as follows:

Ex nA IIC T2B Gc X	(Ta -40°C to +50°C)
Ex nA IIC T2C Gc X	(Ta -40°C to +45°C)
Ex tc IIIC T120°C Dc	(Ta -40°C to +50°C)
Class II, Div 2 EFG T4A	(Ta -40°C to +50°C)

The D2XC1X10 Alarm Horn and Strobe is rated as follows:

Ex nA IIC T1 Gc X	(Ta -40°C to +50°C)
Ex nA IIC T2 Gc X	(Ta -40°C to +40°C)
Ex tc IIIC T120°C Dc	(Ta -40°C to +50°C)
Class II, Div 2 EFG T4A	(Ta -40°C to +50°C)

Installation must be carried out in compliance with the Canadian Electric Code

3.4 Class / Division Ratings for US and Canada

D2xC1 Alarm Horn and Strobe complies with the following standards:

ANSI/ISA 12.12.01-2013 CSA C22.2 No. 213-M1987 CSA C22.2 No. 157-92:2006

For D2xC1X05:

Class I Div 2	ABCD T2B	Ta -40°C to +70°C
Class I Div 2	ABCD T2C	Ta -40°C to +55°C

 Class I Div 2
 ABCD T2D
 Ta -40°C to +40°C

 Class II Div 2
 FG T5
 Ta -40°C to +50°C

 Class III Div 1&2
 Ta -40°C to +50°C

For D2xC1X10:

Class I Div 2	ABCD T1	Ta -40°C to +70°C
Class I Div 2	ABCD T2	Ta -40ºC to +50ºC
Class II Div 2	FG T4A	Ta -40ºC to +50ºC
Class II Div 2	FG T5	Ta -40°C to +40°C
Class III Div 1&2		Ta -40°C to +50°C

Installation must be carried out in compliance with the National Electric Code / Canadian Electric Code

3.5 Ambient Temperature Range:

-40°C to +70°C (Class I Div 2 only) -40°C to +50°C

3.5 Ingress Protection Ratings

The product is rated for ingress Protection as follows: IP rating per EN60529: IP66 Type rating per UL50E / NEMA250: 4 / 4X / 3R / 13

To maintain the ingress protection rating, the two off M20 cable entries must be fitted with suitably rated, certified cable entry and/or blanking devices during installation.

3.6 Electrical Ratings

Part No.	Nominal Voltage	Nominal Current	Voltage Range	Max Current
D2xC1X05 DC024	24Vdc	513mA	20-28Vdc	521mA @ 20Vdc
D2xC1x05 DC048	48Vdc	311mA	42-58Vdc	328mA @ 42Vdc
D2xC1x05 AC115	115Vac	174mA	115- 125Vac 60Hz	183mA @ 125Vac
D2xC1x05 AC230	230Vac	63mA	215- 250Vac5 0Hz	77mA @ 250Vac
D2xC1X10 DC024	24Vdc	876mA	20-28Vdc	876mA @ 20Vdc
D2xC1x10 DC048	48Vdc	461mA	42-58Vdc	475mA @ 42Vdc
D2xC1x10 AC115	115Vac	320mA	115- 125Vac 50Hz	343mA @ 125Vdc
D2xC1x10 AC230	230Vac	100mA	215- 250Vac 60Hz	115mA @ 250Vdc

A supply voltage variation of +/-10% is permissible.

4) Special Conditions for Safe Use

Special Condition for safe Use as stated on the Type Examination Certificate DEMKO 14 ATEX 4786493904X / CoC IECEX ULD 14.0004X:

End user shall adhere to the manufacturer's installation and instruction when performing housekeeping to avoid the potential for hazardous electrostatic charger during cleaning, by using a damp cloth.

The D2xC1 is not to be mounted with the horn facing upwards The equipment shall only be used in end use with appropriately certified cable entry devices and blanking plugs

European Safety Systems Ltd. Impress House, Mansell Road, Acton, London W3 7QH

4.1 Installation

The product must only be installed by suitably qualified personnel in accordance with the latest issues of the relevant standards.

The installation of the units must also be in accordance with any local codes that may apply and should only be carried out by a competent electrical engineer who has the necessary training.

The equipment is not to be mounted with the horn facing upwards.

The equipment has not been assessed as a safety-related device (as referred to by Directive 94/9/EC Annex II, clause 1.5).

The cable entry temperature may exceed +70°C / the cable branching point may exceed 80°C. Therefore suitable heat resisting cables and cable glands must be used, with a rated service temperature of at least 90°C

To maintain the ingress protection rating and mode of protection, the M20 x 1.5 cable entries must be fitted with suitably rated, certified cable glands and/or suitably rated, certified blanking devices during installation. If a high IP (Ingress Protection) rating is required then a suitable sealing washer must be fitted under the cable gland. For use in explosive gas atmospheres a minimum ingress protection rating of IP54 must be maintained. For use in explosive dust atmospheres a minimum ingress protection rating of IP64 must be maintained.

Only the front cover is to be used for access to the enclosure for installation, service and maintenance. Once the product is opened, the Type Rating cannot be maintained anymore unless a full verification of the gasket material is done and there is no damage.

Connections are to be made into the terminal blocks using solid or stranded wire, sizes 0.5-2.5mm2 / AWG 20-14. Wire insulation needs to be stripped 6-7mm. Wires may be fitted securely with crimped ferrules. Terminal screws need to be tightened down with a tightening torque of 0.56 Nm / 5 Lb-in.

Internal earthing connections should be made to the internal earth terminal on the PCBA. The earth conductor should be at least equal in size and rating to the incoming power conductors. The internal earth bonding wire connects the PCBA earth terminal to the internal earth terminal in the enclosure back box.

External earthing connections should be made to the M5 earth stud, using a ring crimp terminal to secure the earth conductor to the earth stud. The external earth conductor should be at least 4mm² / AWG 11 in size.

Check that the earth bonding wire between the two castings is secure and the 'O' ring seal is in place and in good condition.

4.2 Maintenance, Overhaul and Repair

Maintenance, repair and overhaul of the equipment should only be carried out by suitably qualified personnel in accordance with the current relevant standards:

EN60079-19 / IEC60079-19 Explosive atmospheres -Equipment repair, overhaul and reclamation EN 60079-17/ IEC60079-17 Explosive atmospheres -Electrical installations inspection and maintenance

Units must not be opened while an explosive atmosphere is present.

If opening the unit during maintenance operations a clean environment must be maintained and any dust layer removed prior to opening the unit.

Electrostatic charging hazard - Clean only with a damp cloth

5) Installation

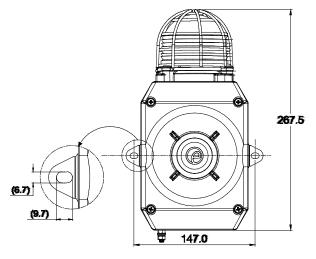


Fig. 1 Fixing locations.

D2xC1 Alarm Horn and Strobe should only be installed by trained competent personnel.

5.1 Mounting

The D2xC1 Alarm Horn and Strobe may be secured to any flat surface using the two 9.7 x 6.7mm, 147mm pitch fixing holes. The enclosure provides IP66 protection and is suitable for installation in exterior locations providing it is positioned so that water cannot collect in the horn, and the cable entry is sealed.

5.2 Installation procedure

- Secure the D2xC1 Alarm Horn and Strobe to a flat surface via the two 9.7 x 6.7mm, 147mm pitch fixing holes in the mounting feet. a)
- Remove the front of the unit by unscrewing the four captive cover screws and pulling the front away from the enclosure. b)
- from the enclosure. Fit an M20x1.5 suitably rated, certified cable gland or conduit entry into the hole in the enclosure and connect the field wiring to the appropriate alarm horn terminals as shown in section 9 and fig 8 (DC) or section 8 fig 5 (AC) of this manual. The power supply terminals are duplicated so that horns may be connected in parallel and for DC units only an end of line monitoring resistor may be fitted. If the second M20x1.5 entry is not used a suitably rated, certified stopping plug must always be fitted. c) certified stopping plug must always be fitted
- Select the required output tone by positioning the six switches as shown in Table 1 and Fig 2. d)
- Adjust the internal volume control to provide the e) required sound level.
- Check that the O-ring seal in the front cover is in good condition and not damaged. Replace the front of the unit and tighten the four f)
- g) captive cover screws.

Volume Control 6)

The alarm horn output level of the D2xC1 unit can be set by adjusting the volume control potentiometer (see Fig 2). For maximum output, set the potentiometer fully clockwise.

European Safety Systems Ltd. Impress House, Mansell Road, Acton, London W3 7QH

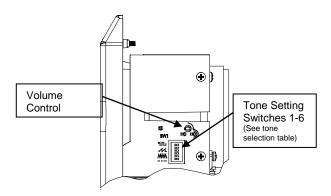
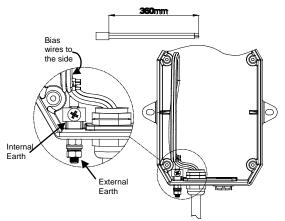



Fig. 2 Location of field controls

7) Cable Routing and Tone Selection

7.1 Cable Routing

Due to the compact design of the D2x units, it is important that the user strips the outer sheath of and biases any cables over the size of 1mm^2 as shown below.

*Glands and/or stopping plugs to be customer supplied to suit application.

Fig 3. Cables are to be stripped and biased toward side of unit with allocated spacing as shown.

7.2 Tone Selection

The D2xC1 alarm horns have 64 different tones. The tones are selected by operation of the tone setting DIP switches (see Fig. 2) on the PCB. The alarm horns can also be switched to sound the second, third and fourth stage alarm tones. The tone table (Table 1) shows the switch positions for the 64 tone and which tones are available for the second, third and fourth stages.

8) AC Wiring

8.1 Wiring Diagram

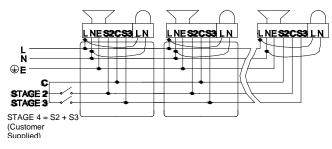


Fig 4. AC Simplified Block Diagram

8.2 Unit's First Stage Tones

Stage one (S1) operation: Simply connect the supply voltage to the L and N supply terminals, (see fig. 5). The Strobe is powered via factory installed wires connected to the sounder. The wires connecting the alarm horn and strobe can be removed if the user wishes to power the strobe separately.

8.3 Second, Third and Fourth Stage Tone Selection

To select the second, third and fourth stage tones on the D2xS1 AC alarm horns.

Stage two (S2) operation: Power L and N, link the common (C) and S2 terminal.

Stage three (S3) operation: Power L and N, link the common (C) and S3 terminals.

Stage four (S4) operation: Power L and N, link the common (C) and both the S2 and S3 terminals.

Strobe will continue to flash during alarm horn S2, S3 & S4 stages.

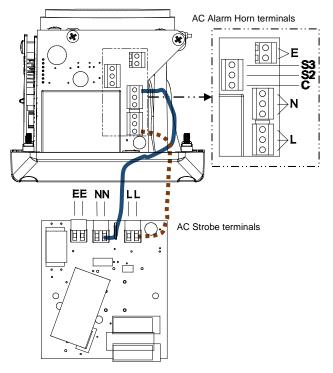


Fig. 5 AC Terminals

9) DC Wiring

9.1 DC Stage Polarity Control

The stage switches of the DC powered D2x units can be activated via Positive (+ve) or Negative (-ve) switching. All units are factory set to -ve switching as standard. If +ve switching is required, the two wire links should be removed from the '-' positions of the stage polarity control terminals and fitted to the '+' positions as shown in fig 6.

European Safety Systems Ltd. Impress House, Mansell Road, Acton, London W3 7QH

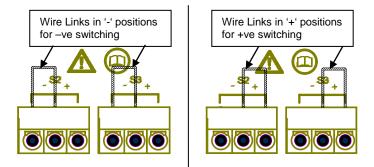


Fig. 6 Stage Polarity Control settings.

9.2 Wiring Diagrams

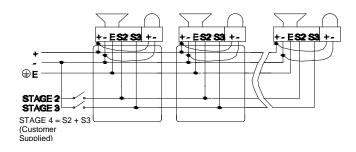


Fig. 7a DC Simplified Block Diagram (negative switching). Optional arrangement.

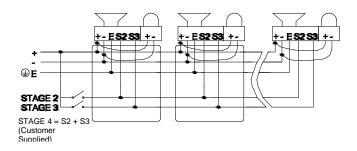


Fig. 7b DC Simplified Block Diagram (positive switching. Optional arrangement.

9.3 Units First Stage Tones

Stage one (S1) operation: Simply connect the supply voltage to the + and - supply terminals, (see fig. 8). The Strobe is powered via factory installed wires connected to the alarm horn. The wires connecting the alarm horn and strobe can be removed if the user wishes to power the strobe separately.

9.4 Second, Third and Fourth Stage Tone Selection

For units set up for -ve switching (default setting):

Stage two (S2) operation: Power +ve and –ve, link a -ve supply line to the S2 terminal.

Stage three (S3) operation: Power +ve and -ve, link a -ve supply line to the S3 terminal.

Stage four (S4) operation: Power +ve and -ve, link a -ve supply line to both the S2 & S3 terminals.

Strobe will continue to flash during alarm horn S2, S3 & S4 stages.

For units set up for +ve switching (refer to 9.1):

Stage two (S2) operation: Power +ve and –ve, link a +ve supply line to the S2 terminal.

Stage three (S3) operation: Power +ve and -ve, link a +ve supply line to the S3 terminal.

Stage four (S4) operation: Power +ve and –ve, link a +ve supply line to both the S2 & S3 terminals.

Strobe will continue to flash during alarm horn S2, S3 & S4 stages.

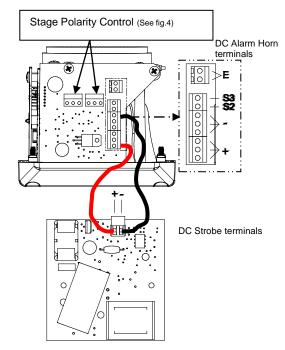


Fig. 8 DC Terminals

10) Earthing

The unit has both internal and external earth terminals, (please see fig 3).

Internal earthing connections should be made to the internal earth terminal on the PCBA, (please see fig 5 for AC, fig 8 for DC). The earth conductor should be at least equal in size and rating to the incoming power conductors. The internal earth bonding wire connects the PCBA earth terminal to the internal earth terminal in the enclosure back box.

External earth connections should be made to the M5 earth stud, using a ring crimp terminal to secure the earth conductor to the earth stud. The external earth conductor should be at least 4mm² in size. The external earth crimp ring should be located between the two M5 plain washers provided and securely locked down with the M5 spring washer and M5 nut.

11) End Of Line Monitoring (DC Units Only)

On D2xC1 DC units, dc reverse line monitoring can be used if required. All DC units have a blocking diode fitted in their supply input lines. An end of line monitoring resistor can be connected across the +ve and -ve terminals. If an end of line resistor is used it must have the following values:-

24V DC Alarm Horn and Strobe

Minimum Resistance 3k9 ohmsMinimum wattage 0.5WMinimum Resistance 1k ohmsMinimum wattage 2.0W

48V DC Alarm Horn and Strobe

Minimum Resistance 15k ohmsMinimum wattage 0.5WMinimum Resistance 3k9 ohmsMinimum wattage 2.0W

The resistor must be connected directly across the +ve and -ve terminals of the sounder board only, as shown in the following drawing. Whilst keeping its leads as short as possible, a spacing of at least 1/16 inch (1.58mm) must be provided through air and over surfaces between uninsulated live parts.

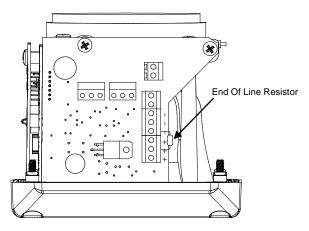


Fig. 9 End Of Line Resistor

Issue: 7

18-06-15

Sheet 6 of 8

Document No. D189-00-501-IS

Stage 1 Tone No	Tone Description	Tone Visual	Switch Settings 1 2 3 4 5 6	Stage 2 Tone (S2)	Stage 3 Tone (S3)	Stage 4 Tone (S2 + S3)
1	1000Hz PFEER Toxic Gas	1000Hz	000000	3	2	44
2	1200/500Hz @ 1Hz DIN / PFEER P.T.A.P.	1200Hz 1s 500Hz 1s	100000	1	3	44
3	1000Hz @ 0.5Hz(1s on, 1s off) PFEER Gen. Alarm	1000Hz 1s 1s	010000	1	2	44
4	1.4KHz-1.6KHz 1s, 1.6KHz- 1.4KHz 0.5s NF C 48-265	1600Hz 0.5s 1400Hz 1s	110000	44	24	1
5	544Hz(100mS)/440Hz (400mS) NF S 32-001	544Hz 0.1s 440Hz 0.4s	001000	52	19	1
6	1500/500Hz - (0.5s on , 0.5s off) x3 + 1s gap AS4428	1500Hz 0.5s 0.5s 0.5s 0.5s 1.5s	101000	7	44	1
7	500-1500Hz Sweeping 2 sec on 1 sec off AS4428	1500Hz 500Hz 2s 1s	011000	6	44	1
8	500/1200Hz @ 0.26Hz(3.3s on, 0.5s off) Netherlands - NEN 2575	1200Hz 500Hz <u>3.3s</u> 0.5s	111000	44	24	35
9	1000Hz (1s on, 1s off)x7 + (7s on, 1s off) IMO Code 1a	1000Hz 1s 1s 1s 1s 1s 7s	000100	18	34	1
10	1000Hz (1s on, 1s off)x7 + (7s on, 1s off) IMO Code 1a	1s 1s 1s 1s 1s 1s 1s 7s	100100	21	34	1
11	420Hz(0.5s on, 0.5s off)x3 + 1s gap ISO 8201 Temporal Pattern	420Hz 0.5s 0.5s 0.5s 0.5s 1.5s	010100	44	1	8
12	1000Hz(0.5s on, 0.5s off)x3 + 1s gap ISO 8201 Temporal Pattern	1000Hz 0.5s 0.5s 0.5s 1.5s	110100	44	1	8
13	422/775Hz - (0.85 on, 0.5 off) x3 + 1s gap NFPA - Temporal Coded	775Hz 422Hz 0.85s 0.5s 0.85s 0.85s 1.5s	001100	44	1	8
14	1000/2000Hz @ 1Hz Singapore	2000Hz 1000Hz 1s	101100	23	3	35
15	300Hz Continuous	300Hz	011100	44	24	35
16	440Hz Continuous	440Hz	111100	44	24	35
17	470Hz Continuous	470Hz	000010	44	24	35
18	500Hz Continuous IMO code 2 (Low)	500Hz	100010	44	24	35
19	554Hz Continuous	554Hz	010010	64	24	35
20	660Hz Continuous	660Hz	110010	44	24	35
21	800Hz IMO code 2 (High)	800Hz	001010	44	24	35
22	1200Hz Continuous	1200Hz	101010	44	24	35
23	2000Hz Continuous	2000Hz	011010	15	3	35
24	2400Hz Continuous	2400Hz	111010	48	20	35
25	440 @0.83Hz (50 cycles/minute) Intermittent	440Hz 0.6s 0.6s	000110	1	44	8
26	470 @0.9Hz - 1.1s Intermittent	470Hz 0.55s 0.55s	100110	1	44	8
27	470Hz @5Hz - (5 cycles/second) Intermittent	470Hz 0.1s 0.1s	010110	1	44	8
28	544Hz @ 1.14Hz - 0.875s Intermittent	470Hz 0.43s 0.44s	110110	44	24	8
29	655Hz @ 0.875Hz Intermittent	655Hz 0.57s 0.57s	001110	1	44	8
30	660Hz @0.28Hz - 1.8sec on, 1.8sec off Intermittent	660Hz 1.8s 1.8s	101110	44	24	8
31	660Hz @3.34Hz - 150mS on, 150mS off Intermittent	660Hz 0.15s 0.15s	011110	30	24	8

18-06-15

Sheet 7 of 8

sales@e-2-s.com www.e-2-s.com

32	745Hz @ 1Hz Intermittent	745Hz 0.5s 0.5s	111110	44	24	8
33	800Hz - 0.25sec on, 1 sec off Intermittent	800Hz 0.25s 1s	000001	53	24	8
34	800Hz @ 2Hz IMO code 3.a (High) Intermittent	800Hz 0.25s	100001	56	24	8
35	1000Hz @ 1Hz Intermittent	1000Hz 0.5s 0.5s	010001	44	24	8
36	2400Hz @ 1Hz Intermittent	2400Hz 0.5s 0.5s	110001	21	24	8
37		2900Hz 0.1s 0.1s	001001	53	24	8
38	2900Hz @ 5Hz Intermittent	518Hz 0.5s	101001	1	8	19
	363/518Hz @ 1Hz Alternating	500Hz 0.25s	011001			
39	450/500Hz @ 2Hz Alternating	450Hz 0.25s 554Hz 0.5s	111001	1	8	19
40	554/440Hz @ 1Hz Alternating 554/440Hz @ 0.625Hz	440Hz 554Hz 0.8s	000101	44	24	19
41	Alternating 561/760Hz @0.83Hz (50	440Hz 0.8s	100101	1	8	19
42	cycles/minute) Alternating 780/600Hz @ 0.96Hz	561Hz 780Hz		1	8	19
43	Alternating	600Hz 0.52s 1000Hz 0.25s	010101	1	8	19
44	800/1000Hz @ 2Hz Alternating	800Hz 0.25s	110101	5	24	19
45	970/800Hz @ 2Hz Alternating	800Hz 0.25s	001101	1	8	19
46	800/1000Hz @ 0.875Hz Alternating	1000Hz 0.57s 0.57s	101101	53	24	19
47	2400/2900Hz @ 2Hz Alternating	2900Hz 0.25s 2400Hz 0.25s	011101	57	24	19
48	500/1200Hz @ 0.3Hz Sweeping	1200Hz 500Hz 3.34s	111101	44	24	12
49	560/1055Hz @ 0.18Hz Sweeping	1055Hz 560Hz 5.47s	000011	44	24	12
50	560/1055Hz @ 3.3Hz Sweeping	1055Hz 560Hz 0.3s	100011	44	24	12
51	600/1250Hz @ 0.125Hz Sweeping	1250Hz 600Hz 8s	010011	44	24	12
52	660/1200Hz @ 1Hz	1200Hz 660Hz 1s	110011	64	24	12
53	Sweeping	1000Hz	001011	56	24	12
	800/1000Hz @ 1Hz Sweeping	800Hz 1s 1000Hz				
54	800/1000Hz @ 7Hz Sweeping 800/1000Hz @ 50Hz	800Hz 0.14s	101011	57	24	12
55	Sweeping 2400/2900Hz @ 7Hz	800Hz 0.02s 2900Hz	011011	54	24	12
56	Sweeping 2400/2900Hz @ 1Hz	2400Hz 0.14s 2900Hz	111011	57	24	12
57	2400/2900Hz @ 50Hz	2400Hz 1s 2900Hz	000111	47	24	12
58	Sweeping	2400Hz 0.02s	100111	54	24	12
59	2500/3000Hz @ 2Hz Sweeping	2500Hz 0.5s 3000Hz	010111	44	24	12
60	2500/3000Hz @ 7.7Hz Sweeping	2500Hz 0.13s	110111	44	24	12
61	800Hz Motor Siren	1.6s	001111	44	24	12
62	1200Hz Motor Siren	28	101111	44	24	12
63	2400Hz Motor Siren	2400Hz	011111	44	24	12
64	Simulated Bell	1450Hz 0.25s ←→	111111	44	21	12
			·			